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Vortex state in a superfluid Fermi gas near a Feshbach resonance
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We consider a single vortex in a superfluid Fermi gas in the BCS-BEC crossover regime near a Fes-
hbach resonance. The effect of the molecular Bose condensate upon the vortex structure is discussed
within the mean field approximation at zero temperature. Using the self-consistent Bogoliubov-de
Gennes equation of the fermion-boson coupled model, we calculate the density distributions of atoms
and molecules. As the number of the molecules increases, both atomic and molecular density changes
from BCS-like distribution to BEC-like. In this regime, the vortex core size does not show drastic
change.

PACS numbers: 03.75.Ss, 03.75.Lm, 67.57.Fg

I. INTRODUCTION

The evidence of fermionic superfluidity in trapped
atomic gases has been clearly shown in the recent exper-
iments [1, 2, 3, 4, 5]. The significant feature of these sys-
tems is that the strength of the inter-atomic interaction is
manipulated via a Feshbach resonance (FR) phenomena.
Therefore the interaction dependence of Fermi gas can be
studied. The crossover, which has been discussed several
decades [6, 7], between weak coupling Bardeen-Cooper-
Schrieffer (BCS) superfluid and Bose Einstein condensa-
tion (BEC) of pre-formed pairs can be realized in these
systems.

The FR phenomena involve the scattering of atoms
from open channel states into a molecular bound state
formed from neighboring closed channel states. The so-
called “pre-formed pair” in the BCS-BEC crossover the-
ory is here equivalent to the substantial molecule in the
closed channel, which has been observed as a BEC on the
one side of the FR.

In this paper we discuss the property of a single vortex
in the BCS-BEC crossover regime at zero temperature.
Since the vortex states in BCS superfluids and in BECs
are significantly differ in their distributions of particles,
observing a vortex state in a Fermi gas provides the in-
formation about superfluidity in the crossover regime. In
the case of a vortex in the BCS state, the energy gap is
suppressed at the vortex core and, therefore, the particle-
hole symmetrical modes, which are localized at the vortex
core, exist in the vicinity of the Fermi surface [8]. In con-
trast to the pair amplitude, the atomic density is finite
at the center of the vortex core. On the other hand, the
particle density in a BEC vanishes at the vortex core,
directly reflecting a singularity of the order parameter.

We are also interested in the vortex core size in the
crossover regime. The core size of BCS superfluid is given
by ξBCS ∼ ~vF /∆, where vF is the Fermi velocity and
∆ is the energy gap. As the attractive interaction be-
comes strong, the growth of the energy gap makes the
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core size smaller [9]. As for a molecular BEC, the core

size is written by ξBEC ∼
√

1/8πnMaM , where nM is the
number density of molecules and aM is the s-wave scat-
tering length of a molecule, which diverges at resonance
as well as that of an atom [10, 11]. So ξBEC also becomes
small near resonance. Then, does the core size have its
minimum around the resonance?

There are several theoretical papers concerning vortex
states in Fermi gases [9, 12, 13, 14, 15, 16]. Bulgac
and Yu, using their superfluid local density approxima-
tion, found that in the BCS regime vortices give rise to
a depletion in density [15]. Tempere et. al. employed
a path-integral method and found the smooth change of
the core size in the crossover regime [16]. These papers,
however, deal with only Fermi gases of which interac-
tion strength is manipulated, and the effect of molecular
BEC is not considered. In this paper, we start with an
atom-molecule coupled model [17, 18, 19], and calculate
density distributions and order parameters of both atoms
and molecules. We use the mean field approximation to
simply deal with the effect of molecular BEC.

II. FORMALISM

We consider atomic gases of two atomic hyperfine
states (labeled by σ =↑↓), which are coupled to a molec-
ular two-particle bound state. The energy of a bare
molecule relative to that of two bare atoms is denoted by
2ν. The model Hamiltonian of the fermion-boson cou-
pled system is given by

Ĥ =

∫
dr

[
∑

σ

ψ̂†
σ(r)HA(r)ψ̂σ(r)

+ φ̂†(r) {HM (r) + 2ν} φ̂(r)

+ g
{
φ̂†(r)ψ̂↓(r)ψ̂↑(r) + h.c.

}]
, (1)

where ψ̂σ and φ̂ are the field operators of atoms and
molecules, respectively. The first and second terms in the
integration represent the bare Hamiltonian of atoms and
molecules, respectively, where HA(r) = −(~2/2m)∇2 +
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VA(r), HM (r) = −(~2/4m)∇2 + VM (r), m is the atomic
mass and VA,M (r) are the trapping potential for atoms
and molecules, respectively. The last term of Eq. (1) rep-
resents the atom-molecule coupling associated with FR.
Its contribution to the effective atom-atom interaction
is −g2/2ν. This means that the interaction is manipu-
lated by changing ν. So we investigate the ν dependence
of this system, especially around ν ∼ 0. Although there
exist non-resonant inter-atomic and intermolecular inter-
actions, we assume the effect of the resonant process is
so dominant that other processes are negligible.

To conserve the total number of particles, we use a

single chemical potential µ and work with H = Ĥ −µN̂ ,

where N̂ is the number operator given by

N̂ =

∫
dr

[
∑

σ

ψ̂†
σ(r)ψ̂σ(r) + 2φ̂†(r)φ̂(r)

]
. (2)

Here, we introduce the mean-field order parameters

P(r) ≡ 〈ψ̂↓(r)ψ̂↑(r)〉 and φ(r) ≡ 〈φ̂(r)〉, which cor-
respond to the Cooper pair amplitude and molecular
order parameter, respectively. The number density of
molecules are given by nM (r) = |φ(r)|2, as usual.
Though we neglect a bare atom-atom interaction, the ef-
fective interaction via FR supports the pairing of atoms.
Since φ(r) is related to an energy gap as we will show be-
low, the pair amplitude remains finite as long as a molec-
ular BEC exists. The relation between order parame-

ters is given by the equilibrium condition i~〈∂φ̂(r)/∂t〉 =

〈[φ̂(r),H]〉 = 0, from which it follows that

[HM (r) + 2ν − 2µ]φ(r) + gP(r) = 0. (3)

As in the case of the well-known mean field BCS theory,
the “off-diagonal energy” should be defined as the energy
gap, i.e., Eq. (1) implies that ∆eff(r) ≡ gφ(r). Then,
conventional Bogoliubov-de Gennes (BdG) approach is
adopted in a similar manner: the field operator of the
atom is transformed with

[
ψ̂↑(r)

ψ̂†
↓(r)

]
=

∑

j

[
u∗j (r) −vj(r)
v∗j (r) uj(r)

] [
αj↑

α†
j↓

]
, (4)

and the BdG equation is obtained by

[
HA(r) − µ gφ∗(r)
gφ(r) −HA(r) + µ

] [
uj(r)
vj(r)

]
= ǫj

[
uj(r)
vj(r)

]
.(5)

In this notation, the pair amplitude and the density at
zero temperature are written by P(r) = −∑

j u
∗
j(r)vj(r)

and nA(r) = 2
∑

j |vj(r)|2, respectively. To avoid the
ultraviolet divergence, we introduce a cutoff energy ωc

which is in the order of the Fermi energy, and redefine

P(r) = −∑
j u

∗
j (r)vj(r)e

−ǫ2j/ω2

c .

Then, all we have to do is to solve Eqs. (3) and (5)
self-consistently. The chemical potential is determined
so that the total number of atoms Ntot = NA + 2NM is
conserved, whereNA ≡

∫
drnA(r) andNM ≡

∫
drnM (r).

III. VORTEX STATE IN THE CROSSOVER

REGIME

We assume a two-dimensional optical trap and
approximate with a harmonic potential: VA(r) =
(1/2)mω2(x2 + y2) and VM (r) = 2VA(r). For simplic-
ity, we neglect the z dependence of the order param-
eters. When considering the microscopic structure of
atomic clouds, however, the degree of freedom in z di-
rection is important. So we assume that gases are con-
fined in the length Lz, and impose the periodic bound-
ary condition. This approximation is valid when Lz

is much larger than the radial size. A single parti-
cle state of a bare atom in this potential is given by

eikzeilθ(r/aHO)lL|l|
n (r2/2a2

HO)e−r2/4a2

HO and its energy
eigenvalue is ǫkln = ~ω(2n + |l| + 1 + k2a2

HO), where

(r, θ, z) is the cylindrical coordinate, aHO =
√

~/2mω

is the harmonic oscillator length, and Ll
n(x) is the

generalized Laguerre polynomial function. The indices
specifying the energy are given by l = 0,±1,±2, . . . ,
n = 0, 1, 2, . . . , and kaHO = (2πaHO/Lz)nk ≡ k0nk

where nk = 0,±1,±2, . . . . By counting the number of
the eigenstates below ǫF , the Fermi energy as a func-
tion of the number of atoms is given by ǫF (NA) =
~ω(15k0NA/16)2/5. The characteristic energy of the sys-
tem is defined as EF ≡ ǫF (Ntot), which is the Fermi
energy in the BCS limit.

For a vortex state in equilibrium, we assume the form

φ(r) = eiθφ(r), (6)

ukln(r) = eikzei(l−1)θukln(r), (7)

vkln(r) = eikzeilθvkln(r), (8)

where ukln(r), vkln(r) and φ(r) are real functions, and
n = 0, 1, 2, . . . is the radial quantum number. In the
BEC limit, by substituting gP = 0 in Eq. (3) the low-
est energy state of molecular BEC with a single vortex
is given by φ(r) =

√
NM/2πa2

HOLze
iθf0(r/aHO), where

f0(r) ≡
√

2re−r2/2. Here, the chemical potential is also
determined by Eq. (3) as µ = ν + ~ω which is composed
of the binding energy ν, the trapping energy ~ω/2, and
the vortex energy ~ω/2.

We consider 300 atoms of 6Li in a trap with ω =
2π × 300 Hz and Lz = 10 µm, from which it follows
that EF = 9.7~ω, aHO = 1.7 µm, and Lz/aHO = 6.
As for the coupling constant, we have calculated with
g
√
n = EF and 3EF , where n is the mean density of

total atoms: n = Ntot/2πa
2
HOLz. Figure 1 shows the

ν dependences of (a) the chemical potential and (b) the
numbers of atoms and molecules. Since bare atom-atom
and molecule-molecule interactions are neglected in the
model Hamiltonian (1), the trapped gas behaves as an
ideal Fermi gas and Bose gas far from the resonance in
each side, i.e., in the BCS limit µ goes to EF , while
µ → ν + ~ω in the BEC limit as shown in Fig. 1(a). By
comparing the results with g

√
n = EF and 3EF in Fig. 1,

the increase of g results in mainly two effects: (i) the res-
onance region in the parameter space of ν becomes wide,
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FIG. 1: The ν dependence of (a) the chemical potential, and
(b) the numbers of atoms and molecules. In both figures, the
results with g

√
n = EF and 3EF are plotted. (a) In both

results, µ → EF in the BCS limit (ν > 0) and µ → µ + ~ω in
BEC limit (ν < 0). The reduction of the chemical potential
with g

√
n = 3EF is larger than that with g

√
n = EF . (b)

The total density is always conserved as NA + 2NM = 300.
The crossover region clearly becomes wide as g increases.

and (ii) the effective energy gap gφ increases, leading to
the reduction the chemical potential. Therefore, though
in the experimental situation the coupling constant is es-
timated as large as g

√
n ∼ 10EF , the calculation with

g
√
n = 3EF may bring us qualitative insight into the

vortex state.

IV. DISCUSSION

Figure 2 shows the density distributions of (a) atoms
and (b) molecules for ν/EF = {1.9, 1.0, 0.0, −1.0} and
g
√
n = 3EF . Both profiles are normalized by the cor-

responding numbers of each particles. We also plot the
density distribution of a non-interacting BEC, |f0(r)|2, in
both figures. As we mentioned above, the atomic distri-
bution far from resonance in BCS side (ν/EF = 1.9) has
no explicit hole associated with a vortex. The large distri-
bution in radial direction is also the feature of fermionic
profile. As ν decreases, however, these fermionic features
disappear and the atomic distribution becomes BEC-like,
i.e., the cloud becomes small in radial direction and,
moreover, the hole at the vortex core clearly appears.

FIG. 2: The density distributions of (a) atoms and (b)
molecules at g

√
n = 3EF . Density profile of an ideal Bose

gas is also plotted in both figures. Both atoms and molecules
change from broad distribution at ν/EF = 1.9 to narrow one
at ν/EF = −1.0. The fraction of atoms localized at the core
decreases as ν decreases, while the molecular density at a
vortex core is always zero.

It means that the density depletion argued by Bulgac
and Yu [15] does not merely come from the increase of
NM , but also come from the change of the atomic density
profile.

The existence of a molecular BEC leads to these
changes in atomic distribution. Since the molecular den-
sity always vanishes at vortex core as shown in Fig. 2(b),
the atomic density is also suppressed there. On the other
hand, molecules are also strongly affected in the BCS
side, and have a broader distribution than those in BEC
side. Coupled to each other, both atoms and molecules
change from BCS-like to BEC-like distribution.

Next, we discuss the change of order parameters in the
crossover regime. Figure 3 shows ν dependence of (a) the
pair amplitude P(r) and (b) the molecular order param-
eter φ(r), or the effective energy gap. These are also the
results of calculation with ν/EF = {1.9, 1.0, 0.0, −1.0}
and g

√
n = 3EF . As ν decreases, the molecular order

parameter monotonically grows and becomes narrower
as in the number density distribution. On the other
hand, the fermionic pair amplitude reaches its maximum
at ν ∼ EF . As ν decreases, first, the pair amplitude
increases since the effective energy gap increases, i.e., φ
increases. When the energy gap exceeds the chemical po-
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FIG. 3: The ν dependence of the mean field order parameters.
(a) The pair amplitude of atoms has its maximum at ν/EF ∼

1.0, while (b) The molecular order parameter monotonically
grows as ν increases.

tential, the pair amplitude saturate. At this point all of
atoms take part in the pair amplitude. Then, the pair
amplitude decreases as the number of atoms decreases.

In Figs. 3(a) and (b), the order parameters have max-
ima at the nearly same radius. This means that the
core size does not strongly depend on ν. Though the ex-
trapolation of BCS and BEC theories predicts that the
core size becomes small at resonance, as we mentioned

in Sec. I, our calculation does not show such behavior.
This result is consistent with the results of Tempere et.

al. [16]. In our calculation, the trap potential determines
the core size as aHO, since we neglect bare atom-atom
and molecule-molecule interactions. When these inter-
actions are considered, the typical core size may change
and depend on ν so that the core size gradually change
between ξBCS and ξBEC, which are determined by the
non-resonant interactions. These interaction terms, how-
ever, do not affect the fact that the core size does not be-
come small near resonance. The atom-molecule coupling,
which causes the divergence of the scattering length, de-
termines the properties of vortices near resonance.

V. CONCLUSION

We have studied a vortex state in a superfluid Fermi
gas near a Feshbach resonance, using an atom-molecule
coupled model and the mean field approximation. Cou-
pled to each other, both atomic and molecular density
distributions change from BCS-like to BEC-like. The de-
pletion of the total particle density does not merely come
from the increase of the number of molecules. Affected by
the molecular BEC the hole at the vortex core in atomic
density clearly appears too. We also studied the change
of a vortex core size and found that it dose not become
small even in the strong coupling regime near resonance.
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